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ABSTRACT

I The mathematical relationships for filtering in a space
domain are developed in a general analogy with temporal filtering.
Cases in which the elements of the filtering system are continuous
or discrete are discussed. General examples of spatial filtering
and the realization of such filters are shown.
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SCHAPTER I
CONTINUOUS FUNCTIONS

A. Introduction

Spatial filtering is a method by which a particular object or set

of objects may be highlighted so that detection in improved with a

minimum lows of information. When a signal is applied to a device

which changes the characteristics of this input signal, a filtering

process has been performed. Spatial filtering thus implies that a

field is processed to create a new field. The desired relationship

iibetween the new and the original fields specifies the nature of the

filtering to be accomplished.

[ There is a close analogy between linear spatial filtering and

[ linear temporal filtering; however, many of the restrictions of

temporal filtering do not apply to spatial filtering, such as:

II1. The output signal in a time filtering circuit cannot appear

[. until the input has appeared. No such limitation applies to spatial

filtering.

1 2. Spatial filtering techniques may be applied to any number

[ of dimensions.

It is thus apparent that spatial filtering is inherently more flexible

!I than time filtering.
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B. ImpulseReonLe

Fig. 1. Temporal filter.

Figure 1 represents a temporal filter in which time is the single

independent variable. uo(t) represents a unit impulse and h(t) is the

characteristic time response to a unit impulse. If the filter A is linear

and stable, superposition principles may be applied and the relation-

ship between an arbitrary input or reference signal r(t) and the filtered

output signal c(t) can be characterized by a superposition integral:

(i) c(t) = r (T) h (t-T) dT

-00

It can be shown that the Laplace transform of r(t) and c(t), designated

as R(S) and C(S) respectively, are related by an equation of the foxm:

(2) C(S) = H (S) R (S)

H(S) is normally referred to as the transfer function of the filter and is

the Laplace transform of h(t). Thus by means of the convolution

integral in Equation (1), the output can be determined in real time by

using time functions rather than frequency functions.
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IIIn a more general view, filtering may be considered for a source

Ssignal with more than one independent variable, as for example, x and

y spacc coordinates. Such a filtering device may be a lens or similar

I optical device in which the spatial features of the object, such as the

[ radiance, determine the output image. As stated previously, spatial

filtering techniques may be applied to three or more dimensions; how-

I ever, the concepts developed here will be limited to two dimensional

I! signals as a matter of convenience.

Let r and c be considered now as functions of x and y

where r is again the reference or input signal. and c is the output or

resultan! image. The convolution or superposition integral for a filter

which is linear and independent of x and y is given by:

(3) c(x,y) = r (x', y/) h (x - x',y- y-)dxldy"

I x-S= -Wo y-00

I h(x, y) is the spatial impulse response of the filter. Note that the

[ integrals range from -co to +00.

C. Frequency Response

I. The frequency response of continuous functions may be deter-

I mined by means of either the Fourier transform or the Laplace trans-,

form. It is usually more advantageous to use the Fourier transform in

[ a general case because the range of the integrals includes the negative

I3
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region as well as the positive region.. The Fourier transform for the I
temporal case is defined asn ,

+0

(4) F(jW) -- f(t) ej~tdt

- 00

The Fourier tranaform of r(x,y), c( x, y), and the impulse response

h(x,y) can be written:

(5) C(j Ow, - ) = R(jwx , jwy/)H(jwx , jiy)

"Here wx and wy are termed spatial frequencies. The transforms are

determined from Equation (4), as for example:

+00 +00

(6) H (jwX, jwy) = 5 5 h (xy) e-j( (xx +wyY) dx dy

X = -00 y=-oo

Because of the two-sided nature of the transforms, initial conditions

are not considered.

The inverse transform of C(jwx , ijw) is given by-

(7) c(xy) = 5 C(j~x , jWy) +j(,Xx +"yYY)d x dwy

The problems of determining either the direct or inverse transforms

are greatly simplified if the variable r and h can be written in

product form

(8) r(x,y) = rx(x) ry(y)

4



9,

(9) h(x, y) •hx(x) hy (y)

or as sums of products

1 (10) r(xy) = r•(x) rmy(y)

n m

(11) h(x, y) = h,,hx(x) hmy(y)

The transform of Equation (9) for example is then given by

1 (12) H(j*x, jW.)= [+ hx(x) e J dxj [hy dy]

and the transform of c becomes simply

(13) C(jWX, ji) = F1 (JWx) Fa (JWy)

where F, is the product of the transforms of rx(x) and hx(x) and Fz is

Sthe product of the transforms of ry(y) and hy(y). Unfortunately,

separation of the functions is not always possible. Transforms such as

Equation (1Z) can be found in the conventional transform tables and are

I. generally double-sided transforms.

Ii D. Spot Size

A spot can be considered as a continuous function of x and yo

An electron beam ,triking the face of a cathode ray tube is an example

II of point sources acting on a medium and the response can be described

in xy coordinates as :

(14) h(c.y) - e-k(x + y 2 )

1 3Ii



In order to determine the spatial frequency response of the tube,

H(jwx, jw.) must be determined.

+ 00

S k(x + yz) -j (w x + w
(15) H(jwx, jw/)= .~z+y e _J( x+yy dx dy

-00

This can be separated as

(16) H(jwx, jwy) = e e .(kx2+jwxx) ejwyydy

-00 
1

Now, it is known from the Gaussian distribution function that the

following relationship exists.
+w x2

(17) e 2o-e dx

-dxO

Equation (17) can be used to evaluate Equation (16) if we let 2aZ = 1.

Then (r = FJi
and

(18) 1 eX dx 1

or

+00(' "x2

(19) e dx = ,,T

-00

Consider the bracket term e dx in(16). Letx=a+z,

1 -00

then dx = dz and

kx2 + jwx x = ka2 + Z a z k + kz2 +j a +jwx z

6



Let Zakz+jwz= 0, ora=- j7

Then kxz +jwxx = kzz + k2

X 4k

[ The bracket term then becomes

+ 00 U9x 2  x- + 00+C,-(kz2 +- 4k' (*-kZ

e(20) e k ) dz = e 4 e dz

00 - 00

f Let
dma

k =r and kzz = r z2 =2mz , then dz =-

rr

LA)
2  w 2

I~~~~ (d)e S mdr1 e

I or
x

(22) Fr e 4k

I The same operation performed on the y terms yields
w 

2

N -(kY2 +jwyy) 'e

(23) e dy =

[ Thus 2 2
Wox + w y)

Z(24) H (jwx, j•y) = Ire 4k

k
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CHAPTER II
DISCRETE CASE

In any filtering process, the characteristic response of the

filter to a unit impulse is used to determine the output for an arbitrary

input signal. In a discrete filter, this characteristic response is

defined as a matrix A = [apq] . Since p and q can have both positive

and negative values, conventional notation cannot be used in which the

upper left matrix element is designated as all . It is therefore neces-

sary to indicate the values of p and q for at least one position in the

matrix. In the convention used here, each matrix position is divided

diagonally, with the position notation in the upper left segment and the

element value in the lower right segment. Thus a typical A matrix

could be that shown in Figure 2.

M0,00,
+1 %1

12.

Fig. 2. A Matrix for spatial filtering.

In Section I, the case of continuous functions was treated wherein

the object, filter, and resulting image were each continuous in x and

y . The spatial filtering techniques described in this section will make

use of the discrete A matrix as a filter; however the object and image

may be either discrete or continuous.
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Before discussing the filtering process itself, it is worthy to note

Ssome of the characteristics of this A matrix.

[1. If the 7• apq = 0, there is a zero average value for the

p q
output when this matrix is used as a filter. In other words, the dc

level is not passed in such a filter.

2. Ifthe 7 a pq$ 0, the dc level is passed and the image will
p q

have an average value taken over all cells which is not equal to zero.

3. Certain configurations of values in the A matrix permit

I expressing the matrix as A = MN, where M indicates a column

matrix and N indicates a row matrix. (The proof of this is in Section

II B. ) If this is possible, the terms can be treated separately as

I functions of x only and functions of y only. As a matter of con-

venience, the discussions which follow will be restricted to this type

of matrix.

[ An example of 3 above is shown in Figure 3.

S-I - -

2- 2 +1 '-1 4
0;-I 0,0 oi Aq2

Il (a) A Matrix As A Column (b) Resultant A Matrix
And Row Matrix

Ii Fig. 3. Factoring an A Matrix.

19
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A. Discrete A Matrix, Continuous Object and Image

o(x,y) [O xy)

A Matrix j

Object Image [

Fig. 4. Filtering a continuous object.

An individual scene can be described completely as far as the

spatial distribution of radiance is concerned. The two dimensional

function R(x,y), where R is a radiance, gives all the available

information. The information is usually collected by some type of

sensor which is limited in the resolution of surface detail. This

characteristic of the sensor will be defined here as the cell size of the

sensor. The cell dimensions will be defined as the minimum size of

cell such that two identical objects, each located in a similar position

in adjacent cells, will always be separated or resolved by the sensor.

In the case of a ground-based radar, the cell size is given by CT/Z in

range and r A 4 in azimuth, where c is the velocity of light, T is the

pulse width, r is the range, and Aý is the beamwidth of the antenna in

azimuth. In the case of the image orthicon or similar optical trans-

ducers, the cell size must be defined in terms of the size of the electron

10
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bepn used to scan the image projected upon the sensitized surface

S[ within the pickup tube.

[ Figure 4 depicts a continuous object which is to be filtered by the

discrete A matrix. This continuous object, O(xy), may be pictured

[ as an aerial view of terrain in which contours are functions of x and

y; or intensity levels in an infrared photograph would yield continuous

functions of x and y. The resultant image is labeled I(x,y).

i In order to perform spatial filtering on this continuous object,

O•x, y), two approaches may be considered.

1. The object may be sampled to yield discrete values for the

I x, y positions. This quantized object may then be operated upon by

the A matrix using a convolution process to produce a discrete image

I(x, y). This convolution process is discussed in Section II B. By use

Iof a sin.x type filter or a holding circuit, the discrete image can be
x[ changed to a continuous function. It might be pointed out that the human

eye carl also perform this discrete-to-continuous operation as evidenced

by a photograph in a newspaper, which is made up of a large number

[ of closely spaced dots, appearing to be of a continuous nature when

[ viewed from reading distance.

•. The A matrix may be transformed into a continuous function

by describing it as a series of step functions. The filtering process is

then the same as in Section I where the object and filter were

[11



continuous. As an example of this process, consider the A matrix in

Figure 3. This can be represented as :

h(x) or h(y) _

-3 -2 I 2 I 2 3

_./ x or y

Fig. 5. The A Matrix described as step functions.

The equations may be written for Figure 5 as:

ejWX -• e-ju'x) j 3 (ja•x _ex)_½e-J'x-e-j3wxb)

(Z5) H x(jWx) =(e- e(e x ejwx) =(e -e
jw~x

Collecting terms

3 ejwx - e-j'Ox- e J3wx- e-j3wx
(26) Hx (J wx) = 3 e J , - - ' 2 j Wx

(27) H (jwx) = 3 sinx - sin 3 x1

Hy (jw) is obtained here by substituting w y in Equation (27) for wx

since the matrix is symmetrical about the center cell. This expression

illustrates how the x and y spatial frequencies are filtered. It corre-

sponds roughly to a bandpass filter except that it introduces no phase

shift. The function is sketched in Figure 6.

12J



[ I-I(j~y) r H(joix)

I

I 1 WX or a1y-3 T 7 r '-"

Fig. 6. Frequency response of the A Matrix

I as a function of wx or wy.

To determine I(x,y) when using this filter, the Fourier trans-

i form of the object, O(jw , jw/), is determined as described in Section

I.[ * 0 0

(28) O(jwx jwy,) = + O00(x. y) e i(W. X + WyY)d dy

.(2-9) IOX'jwx, Jy) H(jwx , J y ) 0(J~x , JW Y)

+00

1(30) I(x, y) = -I-w) £ Y I(jw., , jwy) ej (wAx x + wy Y)dx

I- Before method 1 above may be employed, the continuous object

I. must first be sampled. It must be kept in mind that the sampling

frequency must be at least twice the highest frequency of the input

Ii 13



signal in order to recover the full information content with a linear

device which can separate only on the basis of differences in the

frequency spectrum. In a spatial object, the variations in the x,y

plane correspond to amplitude variations in a time signal, which is

one dimensional.

r (t) rs(t)

Fig. 7. A simple sampler.

Consider a simple time sampler as shown in Figure 7.

Figure 8 depicts sampling as modulation of a pulse train where the I
amplitude of the sampler output is derived from the value of the input

signal at any given time. An impulse occurring at t = nT would have

a Laplace transform of

(31) L[uo(t - nT)] = enTS.

Jýr(t) [ ~)rs (W•_

t t I
t 2t 3t 4t 5t t 2t 3t

(a) Sampler Input (b) Pulse Train (c) Sampler Output

Fig. 8. Sampling considered as modulation
of pulse train.
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This is seen to be a shifting function, or delay. Thus the sampler

I output at t = nT would be r(nT)e'nTS. The shifting function form is

used in the Z transform by defining

(3Z) z = e

I To sample the spatial object, the same sampling method may be

used except that two dimensional shifting is required. In this case, the

shifting function Z is defined as

Zx = SxAX and Z e AY

(3) x and

where .1X and AY are determined by the sensor resolution.

Now the image, Irn'n ' which results from a sampled object,

i Om,n' and a discrete filter can be expressed as

(34) mn = Om-k,n.-p ak a

k p

[where ak and ap may be considered as weighting functions derived

from the impulse response of the A matrix filter. Only symmetrical

[ discrete filters are considered in the derivations here and the

[ weighting functions can therefore be treated independently. A spatial

filter will usually be symmetrical to avoid undesired distortion of the

[ object. It must be remembered that a filter is designed to produce a

Ii desired output from a given input.

I1



Z transforms may be used to describe the shifting and the trans-

form of the object becomes

(35) Go(ZxZy) = Om, n m Zn
mn n

The transform of the image is

(36) GI(Zx,Z) = y Im,nZm Z-ny

m y

The weighting functions of the filter become

(37) A x(Zx) = •amZm[

m[

(38) Ay(Z) : y anZ y
n

Then

(39) GI( Zx, Zy) Ax(Zx)A y (Z Zy)Go(Zx, Zy

As an example of this type of transform, consider the A Matrix

used previously in Figure 3. The Z transform would be

(40) Ax(Zx) = Z- +½Z+z 0 fzx

A y(Z ) would be the same except for subscripts.

(41) Ax(Zx [- i

16
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I ~(4Z.) A (Z)= [Z-]

11



B. Discrete A Matrix, Discrete Object and Image

I 1 1,1/2 1 I

I I I I Filter

I I2 I A Matrix _

Photograph Discrete Object Discrete Image

X Matrix Y Matrix

Fig. 9. Filtering a discrete object.

Consider a system such as that shown in Figure 9 where an

object, such as a photograph, is scanned by a sensor. The output

of the sensor is sampled as described in the previous section to yield

discrete values for each cell in the storage location, which shall be

called the X Matrix. Each position of this X Matrix then corresponds

to an x, y position in the original photograph and the value of the cell

corresponds to the amplitude of the photograph (for example, the

intensity) at that position. It can be expected that noise will be intro-

duced along with the signal so that ideal values as shown in the

discrete object will not be realized. Filtering by a discrete A Matrix

filter will produce a discrete image, which shall be designated the

Y Matrix.

The system in Figure 9 could be reduced by performing the

desired filtering as the information is being stored in the X Matrix,

18



[
but it seems more convenient to explain the filtering action in the

I system as shown. Thus, the system now consists of a discrete object,

[ filter, and image.

As mentioned before, the characteristics of the spatial filter are

I based on the desired final product - the image. Functions which can be

I performed spatially include averaging, differentiation, and integration.

Use is made of averaging to remove fine detail of a field but extended

I1 structure is retained. Differentiation can be used to retain sharp

"• I boundaries while the background is removed.

The Y Matrix will have the same number of rows and columns

a s the X Matrix but it will contain the desired features of the XMatrix

I with the redundancies and undesired information removed. The inform-

ation stored in cell yij of the Y Matrix may be expressed by

(44) = j apq xi + p, j + q[ q

It can be seen that this requires a shifting process. For this purpose

a shifting matrix may be used by defining

Sg = .Bij , sij = 0, otherwise

where g is a constant integer which can be either positive or negative.

The shifting direction is determined by the sign of g and whether Sg

19



occurs before or after the matrix to be shifted. As an example:

B=S C Ii
or D

bik = sij Cjk
j [

By the definition of s ij, the only term which has a value is the one for

which j = i + g ; thus

bik =ci +g,k

When

B = CSg bkj L Cki sij = ck, j - g

With g a positive integer, it can be seen that when the shifting matrix

appears first, the resultant matrix is identical to the original matrix

except that all elements have been shifted y2 g rows with g rows of

zeros at the bottom of the resultant matrix. When S g appears after the

original matrix, the resultant matrix elements have all been shifted g

columns to the right with g columns of zeros on the left. So is the

identity matrix.

To demonstrate this shifting operation, take the case for negative

shifting by letting g = -1.

II

B =S i1 C bik = ci-1, k

2o0i



i

00 0 0 1][ 2Z 3 41 F 0 0 0
S0 0 5 6 7 = 1 2 3 4

0u 1 0 0 0 91 01Z 6 7
0 010 13 14 15 16 10 U 1

SNote that C has been shifted down one row to form B.

IB = CS 1  bkj = Ck, j +1

1 [ 2 3 4 [0 0001 ~2 340
5 6 7 1 0 0 0 7 89
B= 9 10 U1 01 0 0 10 11 1Z-1[314 15 16 0 0 1 0 14 15 160

! Note that C has shifted left one column to form B.

Thus, column and row shifting of the X Matrix can be performed

I by the process

Sp XSq

i which shifts the original X Matrix up p rows and q columns right

(p and q positive integers). Equation (44) can therefore be written in

[ matrix form as

[ (45) Y= • apq Sp XS.q

p q

[• As stated previously, and shown in Figure 3, certain arrange-

I ments of the A matrix elements lend themselves to column and row

factoring. If such is the case, so that A a MN, where M m mPl is a

column matrix and N = n1 ,q is a row matrix, Equation (45) can be

ji expressed in the form

21
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(46) Y m mpSpX S qnq

pq q
since a = m pnq . The summations are now independent of the matrix

multiplications so II

Y = • mpSp X )S-qnq

p q

or

o(47) Y A0 X At

when

A0 = mpSp and At ='S.qnq

P q

It is usually desirable to find a single A matrix which performs the

same function as the sequential application of A and At . This can be

symbolized by g
(48) A =A 0 * A'

The * operation must satisfy the operations for an X xpq matrix E

such that

x = Jli, p= a; q = b

Pq 0, otherwise

When X is operated on with A only, the following result is obtained:

Ya-i,b-j = Iapqxa-i+p,b-j+q aij
p q

22 0



I
An operation on X with A° and As yields

S. 'S V:a0 a!

ai, , I cd a-i+u+c,b-j+v+d

I v c d

= 5''a0  at
U V.j u,v 1-uJ-v

i Therefore

(49) a ao a! i-
•~ • ••v I-o. j-,;

It is thus seen that for A = A0* A', the* operation is a two di-

I mensional convolution operation.

If A? and A: are both factorable into one row-and one column

matrices, so that A0 = M°0 N and A' = MIN', then the convolution of

I A0 and Al may be expressed as

U v

Since the summations are independent

ai. mormm- no nk mn.
I3 u I-U n -v iIiU v

where'

Mi =jmo nil. and nj 'X no n°u 1-uI v J-v

u v

The resultant A matrix can. therefore be expressed as A = MN . The

23



A matrix is thus factorable when A" and At are factorable and the

elements aij of the A matrix can each be obtained by a one-

dimensional convolution. I

Desired information can be stored in the Y matrix of Figure 9,

while undesired information is rejected, by selecting a specific A

matrix to perform the required filtering. It was shown in Figure 6 11
that filtering comparable to a bandpass temporal filter could be

obtained from an A matrix such as that shown in Fig. 3. A low pass

filter can likewise be devised which will perform a smoothing (or j
averaging )function. Consider a normalized A matrix of the form I

- * I - ;I/ -1,o0 -1, Y1
~~ +1+

II I 9 9 9I3 3• 3. "3, +
0ýl 00 01

( a ) a ct red or m Of ( ) A M at r x I
9+ 9/ 9P

(a) Factored Form of (b) A Matrix I
The A Matrix

Fig. 10. A Matrix for spatial smoothing.

The low pass characteristic may be seen from its continuous form I
as developed in Section II A, pages 11, 12 and13 . [

2
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1h(x) or hMY)

I I-- .:x or

-3 2 -o2 3

I Fig. 11. A Matrix described as step functions.

1 [e 3 - e-J
i (50) H(jw) = e LJw

x~) j (~,~Zrnw

(51) H(jwx) = 2 sin 3_w, ; H(j)2sn
3wWy

i H(jwx) Or H(j(y)

1 2

cwx or[ 3T0 3 iT o W •

3 3

[ Fig. 12. Frequency response of A Matrix as
a function of wx or wy.

It can thus be seen that an A matrix of the form shown in Figure 10

[ will exhibit low pass filter characteristics.

Gradient information can also be obtained by the form of the A

!25
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matrix. For one-dimensional spatial differentiation, consider the

cells of the A matrix as having a center-to-center spacing of one unit.

To store gradient information in the Y matrix, it is necessary that

(52) xi, j+ i xiX,

where Au is the spacing between columns (and equal to one). If fl
Av = I is the spacing between rows, two dimensional gradient inform-

ation may be obtained by Ii
I * 1-x, P xi+'l, j 1,

Yi, j 2 'A u + AV*_ X~ + i 1 xj l

-i, j+ xi, j+l+ xi+ ,j•

(53) Yi,j = Au

An A matrix which will perform the operation in Equation (52) would

be as shown in Figure 1.3 (a). The two-dimensional form in accordance i
with Equation (53) is shown in Figure 13 (b). I

0 0 -I +1 100 0Y

It I'I+1' MI0 11
V+E O

(0) A Matrix For (b) A Matrix For
One-dimensional Two- dimensional
Spatial Differentiation. Spatial Differentiation. I
Fig. 13. A Matrices for differentiation.

II



[

The cells values correspond to the coefficients in the equations and

the cell positions to the subscripts (xij is the 0, 0 position).

[Consider the advantage of using a one-dimensiozial gradient type

[ filter where the X matrix has large areas of redundancy. For example:

!
I I I I I I I.0 0 0 0 0 -I

0 00 -0100 0 -I
1.I~io/ 0 010 1 1 0"1 0101+1 0 -:11

I I 1.0 0 000 I 0-1 00+1 0-I1
1 ._1 M0ri I r1 1 1. 1~ 1 0- 01 01+ 0 -

" .AMatrix I I I I 0 010 0 0 -I

.X Matrix. . YMatrix

"Fig..' 14. Example of o'ne-dimensional gradient storage.

A row through the centers .of the X and Y matrices would appear as

shown in Figure 15. The -1 in.the far right column of the Y matrix is

!created by tlhe bourndary of the matrix and in a.la.rge field it would not

"be considered. It can be seen that information is stored in the Ymatrix

only when there is; a change in levels between adjacent cells in the X

[ matrix. Hence redundancies, are eliminated.

Further examples of spatial filtering with a discrete system are

I shown in the following section.
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X Matrix

41 I
Y Matrix

Fig. 15. Result of spatial differentiation.

I

C. General Examples I
The application of the A matrix in Figure 16 to an X matrix,

which has a constant background level, is shown for two cases in

the following figures. In Figure 17, combinations of single elements

which differ from the background are to be filtered. In Figure Z1,

vertical, horizcntal, and diagonal lines are shown against the constant

background. The shaded X matrices in Figures 17 and Z1 may be

considered as "pictures" containing discrete objects or lines against a

constant background. These "pictures" are given a relative intensity

value for each cell, just as would be done in a sampler (Figures 19 -

and 23). The filtering action of the A matrix is shown in both "picture"

28
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and "numerical intensity" form in the Y matrices of Figures 18, 20,

1 22, and Z4. In the "pictures", the highest intensity is considered as

white and the lowest intensity as black. Thus, the Y matrix "pictures"

are actually relative intensities, with white and black as the bounds.

The "numerical intensity" figures for the Y matrices have been derived

from the relationship discussed in Section HI B and repeated here for

refe rence

re eYij apqxi ++p, j +q

SI The periphery values in the Y matrices should be disregarded as they

i have little meaning. In the calculation of yijj, the value of zero was

taken for any element outside of the array. For a picture of large

I extent, these boundaries would not be so evident.

I
-1;1 1 0 - ItO - 1I

[
II'

i8 8

I 0 0 I

1,-I- 1,0 1

[ Fig. 16. A Matrix for spatial filtering.
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[
F
[
I
I
I
I

Fig. 17. X Matrix.
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I
-I

I

I..

[
[I
[

Fig. 18. Y Matrix which results after filtering Fig. 17.
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I I1I11,1" I I I I I I i 1111111 II 11111 I I[

I I I I I I I I I I I I I I I I I I" I I I I I I I I I I

SI I I I I I I I I I I I I I I I I I I I I I I I I I I I

• I I I I I I I I I I I I I I I I I I I I I I I I I I I IL

I I I I i I I i I I I Ii I I I I I i I I I I .I I I I I[ I
I* I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I t I I VI +I iI II 1111111111111 I I

I I II I I I I I I I I I I I I I I I I I I I I I I I

I I
I I I I I I I I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I I "1 I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I1  I I I I •' I I I I I I I I I I I I II

I I I I I I I I I I I I I I t I I~ I I I I I I I I I I I
-- - - - - - - - - - - - - - - - - - -ai i i t -
I I I I I "I I "I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I ! I I I I I I I I I I

I I I I I I I I I I I I I I I I I I "I I I I I I I I I I

Fig. 19. Numerical intensity X Matrix for Fig. 17.
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Fig. 20. Numerical intensity Y Matrix for Fig. 18.
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Fig. 21. X Matrix.
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Fig. ZZ. Y Matrix which result. after filtering Fig. 21.
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SI I I I I I I I I I I I I I I I I I I I I

Fi.2.Nueia fT inestX Matri T for Fig [1.

S I I3I I I I I I I I I I I I - II

I I I I I 1 1 1 1I 1 1I1I I 1I I 1I I 1I 1 1I 1 1I 1 II

I I I I I I I I I I I I I I I I I I I I I I I I

I ii

I'-1 1I I I I I I II 1 1I11 1I1 I I I
I I I ' ' ' I I I I III III 1 1 1 1 1 I I I I1 I I1I11

I 11I I I II II 1 -1 II 1II" I I I II I I II

I I I I I I I i I I I I I I I I I I I* I II I I

I I I I I I I I I I I I I I I I I I I I I I I I

I I I I t I I Il I I I I I l l I I l i I I I l I I I I

Fig. 23. Nurmerical intensity X Matrix for Fig. 21.
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Fig. 24. Numerical intensity Y Matrix for Fig. 22.
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CHAPTER III
REALIZATION OF SPATIAL FILTERING

At the present time, all sensors which detect spatial-type i
information must scan the area of interest in some prescribed manner

and the resulting information appears as a signal at a set of terminals

with a single independent variable, namely time. If the original field

varies as a function of time,• each frame produced in the scanning

process is essentially a single sample (samples in time) of the field.

Because the area scanned usually has two spatial coordinates, it is II
necessary to establish a raster which defines the path followed by the

sensor in scanning the area. This raster indicates the manner in

which the area is sampled spatially. In spatial filtering, it will 0

generally be necessary to store at least a section of the image. This i
can be accomplished dynamically by delay lines of various types, or

by static means of storage such as magnetic cores, drums, or tapes.

A. Lens System

1. Mechanical Scanning

By. means of polarizing devices, the intensity of incident light

can be varied. Consider the form that an A filtering matrix assumes -

each cell has a discrete value. If an object (picture) has different

light intensity levels corresponding to its features (for example, a.

television picture of a stationary scene), the light intensity from any

D
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[

segment can be varied by polarization. As mentioned previously, a

[ scanning process is required for spatial filtering.

[ A lens consisting of discrete segments, in which the orientation

of the polarizing devices is varied to produce the relative values

[ desired in an A matrix, could be used to scan an illuminated picture.

A phototube attached to the lens would then sum the output from the

filtered object and store this information in a suitable device (Y

matrix).

SI A simplified form of this system is shown in Figure 25. The

cross-hatched areas correspond to * , the horizontal-lined areas

to j , and the clear area to 1 (no attenuation)o

By scanning the entire picture and storing the output from each

position on which the filter is centered, a spatially-filtered image can

be realized.

[ This system has the disadvantage of being extremely slow as

[ each frame must be mechanically scanned before another frame can be

admitted to the filtering section.

[2. Electronic Scanning

[ Another device that appears to have operating principles which

could be adapted to spatial filtering is the charactron tube. This tube

[ has a matrix through which the electron beam is directed to select

Ii desired characters for subsequent positioning on the face of the tube.
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Filter Object 1

-J4 Xi - -- [
0,-I 0,0 0/1

1,-I 1,0 I, I S/ I

Front View

(a) Desired A (b) Lens System In Q
Matrix One Position For

Filtering

Object

S7 ~ FilIter

_3View B+

(C) Output System 0

Fig. Z5. Lens system for spatial filtering.
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Now consider a modification to an image orthicon camera tube in

I which a matrix is positioned between the cathode and the target. This

matrix could correspond to an A matrix by having each segment

consist of a certain size mesh. Now, if an electron beam, which would

I completely cover the matrix, (c~onsider the A matrix as a 3 x 3 matrix

Ifor this case)was directed through the matrix, the number of electrous

going through each segment would be directly proportional to the mesh

I size. After passing through the matrix, the electron beam would then

be deflected for the desired raster used in scanning the target. The

center of the beam would correspond to the a 0 0 position of the A

I matrix and the point upon which it was directed on the target at any

instant of time would correspond to the yij position of the Y matrix.

The beam would thus cover 9 normal cells on the target. The number

I of electrons in the return beam would then be dependent upon the A

[ matrix values and the charge distribution on the target. This would

provide the desired multiplication of all cells adjacent to xi (the

target is the X matrix) by the proper apq of the A matrix. The sum-

[ ming is done by the number of electrons in the return beam. This

would provide a much more rapid means of scanning a target than the

previous device consisting of a photo-tube and polarized lens.
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CHAPTER IV 0
SPATIAL FILTERING WITH FEEDBACK

If a television camera is placed in front of its monitor so that

the field of the camera exactly coincides with the size of the monitor 0
screen, an x,y position of the monitor then corresponds to the same

x, y position of the sensitized material in the camera. For example, a

spot in the exact center of the monitor screen would be in the exact

center of the image orthicon photo-cathocde. Transmission by the

camera would place the spot in the same original position on the

monitor.

Now if the camera is displaced either to the right or left, a

series of spots will be shown on the monitor with spacing between

the spots equal to the camera displacement. This may be shown by a I
top view of the camera and screen:

A.jXf Point A
Screen - - WSource .

Point
Source

Camera -4xk- -•AK

(a) No Displacement (b) Camera Displaced (c)Camera Displaced
To The Right To The Left

Fig. 26. Top view of camera and monitor screen
for spatial filtering with feedback.
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This system is shown in Figure 27 as a servo diagram. Laplace trans-

form for the transfer function is used.

[
R L..+GS X k-X S x)

Fig. 27. System servo diagram.

When the camera is displaced to the right a distance AX, the spots

are displaced to the left by an amount AX. There is thus a shifting

function e+AXSX. For camera displacement to the left, the shifting

function becomes e-AXS . The closed loop transfer function becomes

I I(54) C =k e ± AXS ;x +j

Two-sided Laplace transforms must be used for this system to define

[cc for each direction. In time systems, instability would occur when

[ the denominator equals zero. If such were the case here, for the

positive exponent

[+AX(a +jj) IIi e[ k

(e + X)(e j X) =1 AXn
.n = n2_7r

AX
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Since the shifting is to the left, AX can be considered negative and a 1

must therefore be positive for convergence of the Laplace integral .

When shifting is to the right AX is positive and az must be negative

for convergence. Therefore, the region of convergence in the Sx

plane is a 2 < 0 .< a,.

Actually instability is not a problem because the system is

bounded. Intensity of the spots cannot increase beyond the percent

modulation of the video signal in the camera for a pure white object.
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- CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

I Spatial filtering is a process which may be utilized to highlight

Si desired features in a field of view. A scanning process, which is a

function of time, is required to process the field and store the infor-

I mation in suitable form. It has been shown in Reference 1 that a time

varying signal may be stored in a matrix of transfluxors by signal

steering techniques. Once this information is in matrix form, the

I spatial filtering process may be applied to eliminate redundancies,

i ismooth fluctuations, or select desirable featuree from a background.

It has been shown that time filtering procedures using Laplace

i or Fourier transforms may be extended to include more than one

variable, namely space coordinates. The restrictions of temporal

filtering may be overcome with spatial filtering because the space

coordinates may range over all values from plus infinity to minus

[ infinity.

Spatial filters may be realized by means of lens systems, trans-

fluxors, digital techniques, and other systems. Only two methods

[ have been discussed here, but it is possible to devise such filters by

[ rany means which can multiply and sum the required elements. It is

believed that the electronic scanning method could provide an ex-

•I tremely rapid means of accomplishing the desired filtering.
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